1. Could Kebbi State achieve the annual paddy production of 1.85 million tons in 2015-2016 and become the No. 1 state in Nigeria?

It is hard to believe the data on the annual paddy production of 1.85 million tons in 2016. But there are many reports of Kebbi Rice Revolution in Nigeria's various newspapers and the internet since 2015, so it is unlikely to be a complete groundless fact. We could confirm some facts by Google Earth image by chance at the end of August 2017. The Google earth images at Sangelu and Suru towns area of the Rima River floodplain in the central Kebbi state showed that small pump irrigated sawah system development by farmers self-help efforts reached at least 2000 ha (10% of the total area of the flood plain) in 5 years from 2012 to 2016. The total length of the Rima River and the Niger River flood plain from Sokoto state to Niger state is about 450 km in the whole of Kebbi state, the two rivers’ width is 3 - 15 km, and if it is 10 km on average, it is about 450,000 ha in total. Since Sangelu and Suru flood plains occupy only about 20 thousand ha, the total area of irrigated sawah become 45 thousand ha (10% of the total flood plain area). Although this is a simple extrapolation, the 2000 ha of sawah development was the fact and it has been realized by countless farmers on their own efforts in the five years 2012 - 2016.

In Nigeria it is a remarkable increase in paddy production from the level of 4 million tons in 2014, but it is becoming clear that the increase in production after 2015 - 16 is even more remarkable. Although official agricultural statistics of the government of Nigeria (NAERLS and FDAE 2014) have published only rice production data for rainy season so far, it is estimated that 6.1 million tons in 2013 and 6.73 million tons in 2014. FAOSTAT basically relies on data of NAERLS and FDAE and does not include paddy production in dry season which started seriously from 2013 through full-scale policy support. According to the report of the Federal Ministry of Agriculture in Nigeria (Table 1, Johnson and Masias 2017), dry season rice production (from around November to May) was estimated to be about 1 million tons in the first fiscal year 2017-2018.
year of 2013. Apart from the Jigawa, Kebbi, Sokoto, Zamfara, and Kano states, the dry season cropping is also expanding in various states such as Niger, Kogi, Bauchi, Gombe and other states since 2016. In Kebbi state, this dry season production has been based on the small pump irrigation using tube well (1-2 units of pump per ha and using shallow groundwater less than 8 m) in individual farmer’s sawah fields developed by farmers’ self-help efforts. However in other states, majority of the irrigation schemes were implemented mainly by the government in large-scale 5000-15000ha.

According to the report of Kebbi State ADP in 2017 (Shehu and Lolo 2017) and NAERLS and FDAE (2014), annual paddy production for 2011-2012 was about 60 thousand tons only. But after 2013, the incredibly big increase in production began. It was the sum total of 190,000 tons of rainy season work in 2013, 200,000 tons in dry season, total of 390,000 tons. In dry season of 2014, it was 330,000 tons, rainy season was 190,000 tons, total 520 thousand tons. In 2015 total of dry season and rainy season was 750 thousand tons. As shown in Fig. 1, the total was 1.85 million tons (rainy season 107 thousand tons, dry season 780 thousand tons) and became No.1 paddy production state in Nigeria (Shehu and Lolo 2017, Tene 2017, Essiet 2016, Yombe 2016). It increased by more than 30 times, reaching 60,000, 390,000, 520,000, 750,000, 1.85 million tons in the four years from 2012 to 2016. The percentage of paddy production of the Kebbi state in the whole Nigeria, it was 2.3% in 2000 (Project Synergy 2004), 1.3% in 2011, 1.2% in 2012, 8.1 % in 2013, 6.7% in 2014, 20.3 % in 2016. It can be said that this is an astonishing increase in production. Although the reliability of the statistical data in the figure below needs to be verified in the future, the realization of the rice revolution by the Kebbi state is also a word in the neighboring Niger state (On October 16, 2017, Niger State Deputy Governor's remark the Kebbi Rice revolution to Dr. YS. Ademiluyi, the author of the report and the national coordinator of Sawah team of National Center for Agricultural Mechanization (NCAM) who visited the Niger state for the explanation of the sawah technology dissemination plan in Niger state).

What is noteworthy in this recent major increase in production is the promotion of the dry season work of irrigated rice fields as mentioned above. Only in Kebbi state, there are no large-scale irrigation projects led by the government like other states, but as described below, Kebbi state has used farmers’ based small pump irrigation schemes. The development of the numerous irrigation systems has been done by farmers’ own power. Fadama I (1993-1999), II (2004-2009), and III (2008-2019) have supported these farmers’ efforts under the World Bank/African Development Bank schemes over the past 30 years. At the time Nigerian sawah team started sawah technology dissemination, more than 100,000 pumps have been installed and have been carried out by over 100,000 farmers for vegetable cultivation such as onion and irrigated rice production by micro sawah plots. From 2011 onwards, it was effectively linked to the sawah technology. After 2013, the promotion of dry season work that can avoid flooding accelerated farmers' self-help sawah field development. Meanwhile, in states other than Kebbi such as Jigawa, Sokoto, Zamfara, Kano, etc., dam based a large-scale irrigation schemes of thousands to more than tens of thousands ha was developed in each state by government project during last few decades. For example, Wurno irrigation project in Sokoto State, Bakolori irrigation project in Zamfara State, Hadeija irrigation at Jigawa, Kano rivers irrigation site, and etc.

![Fig. 1. Trend of Rice(Paddy) Production and Land Area in Kebbi State. Data Source: Kebbi State Agricultural Development Project (2017) (By Bello Shehu and Abubakar Lolo, 2017. Promoting Rice Productivity in Kebbi State: Linking Data and Policy , USAID, Michigan State Univ, IFPRI, and FMARD)](image-url)
In 2013, for first time ever, we launched Dry Season farming of rice to take advantage of irrigation capacity in the North of Nigeria.

For first time ever, Federal Government provided massive support for dry season rice cultivation in 10 states (by Minister of Dr. A. Adesina).

267,491 farmers received 50kg seeds, two bags of 15-15 NPK and one bag Urea.

This has added an additional 1,070,364 MT of food in 2013. This is one-third of total paddy needed to be self-sufficient by 2015.

<table>
<thead>
<tr>
<th>State</th>
<th>Number of farmers</th>
<th>Estimated paddy production (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauchi</td>
<td>5,822</td>
<td>23,288</td>
</tr>
<tr>
<td>Gombe</td>
<td>9,664</td>
<td>38,656</td>
</tr>
<tr>
<td>Jigawa</td>
<td>74,972</td>
<td>299,888</td>
</tr>
<tr>
<td>Kano</td>
<td>31,491</td>
<td>125,964</td>
</tr>
<tr>
<td>Kastina</td>
<td>3,334</td>
<td>13,336</td>
</tr>
<tr>
<td>Kogi</td>
<td>7,355</td>
<td>29,420</td>
</tr>
<tr>
<td>Niger</td>
<td>1,002</td>
<td>4,008</td>
</tr>
<tr>
<td>Sokoto</td>
<td>46,087</td>
<td>184,348</td>
</tr>
<tr>
<td>Zamfara</td>
<td>32,391</td>
<td>129,564</td>
</tr>
<tr>
<td>Kebbi</td>
<td>55,473</td>
<td>221,892</td>
</tr>
<tr>
<td>TOTAL</td>
<td>267,591</td>
<td>1,070,364</td>
</tr>
</tbody>
</table>

Table 1. Estimation of Dry season paddy production in 2013 based on the policy supports of seeds and fertilizer. Assuming one farmer can produce paddy 4t per 50kg seeds+100kg of 15-15+50kg of urea.

As shown in Table 1, it was estimated that about 1 million tons of additional dry season paddy production mainly in the northern states of Jigawa, Kebbi, Sokoto, Zamfara, Kano during November 2013 – June 2014 (Johnson and Masias 2017). This means that Nigeria’s total paddy production in 2014 was 7.8 million tons, i.e., which is the total of FAOSTAT data of 6.73 million tons (original data uses NAERLS and FDAE 2014 for wet season) plus dry season paddy production of 1.07 million tons (Table 1). Although no official data has been obtained since 2015, according to an informal survey (Mapping of rice production clusters in Nigeria reported in May 2017 by GEMS 4, an international NGO supported by UKAID in the UK), it is estimated that the total amount of paddy production in the dry season and rainy season total amounted to 9.1 million tons in 2016–2017 (Tene 2017, Chika 2018), which is equivalent to 5.7 million tons of milled rice. Based on the 5.7 million tons of the milled rice, we re-calculated the paddy amount using milled rice/paddy rice conversion ratio, 0.625, in this paper. According to GEMS 4, Kebbi state was No.1, which produced 2.8 million tons (1.6 million in wet and 1.2 million in dry season) and No.2 was Kano with 2.3 million (1.49 million in wet and 0.77 million in dry season). The following state followed the third place, Kaduna, Jigawa, Taraba, Sokoto, Zamfara, Niger and the northern states were dominated.

2. Governor of Kebbi State Dakingari declared Kebbi Rice Revolution at September 2013 at the economic summit of the capital, Abuja

As shown in Fig. 2 below, in June 2010, the Nigerian Lowland Agricultural Development Project, i.e., Fadama III approved the demonstration and training to incorporate Sawah Technology as a project technology. Under the approval of the World Bank, during March 2011 - December 2012, Nigerian sawah team under National Center for Agricultural Mechanization (NCAM) and Kinki University/Shimane University team collaborated with the World Bank-supported Fadama III / ADP (State Agricultural Development Programme). The operational fund (Fig. 4) was supplied through Ministry of Education, Culture, Sports, Science, and Technology (MEXT)/Japan Society for the Promotion of Science (JSPS) assisted grant-in-aid Specially Promoted Research on “Materialization of West African rice green revolution by Sawah eco-technology and the creation of African Satoyama systems, 2007-2011”, which project leader was T. Wakatsuki, the author of this report. The team demonstrated and trained Sawah Technology in 6 local government areas of Arugungu, Birinin Kebbi, Jega, Sangel, Suru, and Bagudo (Fig. 3) covering major rice cultivation areas distributed in the floodplains of major rivers in the state. By the end of April 2012, the farmers’ groups could develop 18 ha standard sawah systems at 18 sites at 6 local government areas, 1 ha each. They improved their traditional...
Mr. Bukar Tijani
National Project Coordinator
Third National Fadama Development Project
NFRA – National Fadama Coordination Office
Naflah Plaza, Plot 502, off Constitution Avenue
Central Business Area, Abuja

Dear Mr. Tijani,

Nigeria – Third National Fadama Development Project (Cr. 4494 – UNI)
Re: Request for No Objection for the MOU on Incorporation of NCAM SAWAH Technology into Third National Fadama Development Project

We acknowledge the receipt of your email dated June 8, 2010 requesting for the Bank’s no objection on the above subject matter. We have reviewed your request and based on the information provided, the Bank has no objection to the incorporation of NCAM SAWAH Technology into Third National Fadama Development project.

Sincerely,

[Signature]

Abubakar Abdul
Task Team Leader

Fig. 2. MOU between Nigerian Sawah Team and Fadama III for the incorporation of Sawah Technology.

Fig. 4. Powertillers supplied by JSPS fund for Sawah Technology training at Kebbi, Ebonyi, FCT, Benue, Delta and Lagos states during 2010-2011. ① 12 sets of Dong Feng powertiller ready to deploy to the six states at NCAM storage warehouse, ② Rotavator for cultivation, ③ Anti Skid wheel, ④ Other power tillers used for Sawah technology development, Shakiti from India and Kubota from Japan, at NCRI storage.

RICE REVOLUTION
- Three hundred and eighty thousand (380,000) hectares of land has been brought under rice cultivation during the wet season.
- sixty thousand hectares under irrigation.
- 150,000 farmers participating.
- Target for 2013/2014 - 500,000 farmers
- The State has a large number of vibrant registered cooperative rice farming associations
- The State was able to obtain the highest national yield of 7.6 tonnes per hectare in the year 2010 under the SAWAH/FADAMA programme using power tillers and proper agricultural practices.

In conclusion our collective effort to date has resulted in;
- Making agriculture more attractive to the youth,
- Reducing unemployment and restiveness among the youth,
- increasing food production, providing food security, wealth creation and reducing poverty
- Increase in hectarage under cultivation to 45% from 35% during the wet season and 35% from 20% in the dry season.
- Dry season rice production increased to about 170,000 metric tons
- Wet season rice production is estimated at about 760,000 metric tons.

Fig. 5. Governor of Kebbi State, Dakingari, declared the Kebbi Rice Revolution at the Economic Summit at Abuja, Nigeria, 4th of September, 2013
Micro rudimentary sawah plots to the standards sawah plots and got 128 tons (average paddy yield 7.1 t/ha against traditional paddy yield of 1.5-2.5 t/ha). The results of technology transfer and dissemination in Kebbi state are shown in Table 4. Governor of Kebbi, in September 2013, at the economic summit of the capital Abuja, called the result Kebbi Rice Revolution (Fig. 5, Dakingari 2013).

The Governor also reported that Kebbi state cultivated rainy season rice 380,000 ha in 2013 - 14 and got 700 thousand tons of paddy and also announced an estimate of 170 thousand tons of paddy production in the dry season work (from around October to July). It is slightly different from the data shown in Fig. 1, because it crosses the year, and there is a possibility of over estimation, because it is a political presentation at Abuja, Nigeria. But it is estimated that there was innovation and popularization to farmers. Revolutionary production technique might expand for rice cultivation in Kebbi state during 2013-2015 as shown in the Fig. 1. The first 18 ha demonstration and training during the 2010 to 2012 were the contribution by the Nigerian Sawah team, but after purchasing 20 numbers of powertillers at farmers’ own expense and expanded the dry season sawah based rice cultivation to 199 ha by the end of May 2014, realizing production of 1260 tons (6.3 t/ha) of rice which were shown in Table 4. Those were done almost all by self-help efforts of the farmer group and the Kebbi state Fadama III/ADP.

With the above results, the Kebbi state government purchased 1000 tillers and started a farmers’ self-help sawah improvement project of more than 10,000 hectares from May 2015. Apart from the state government, purchasing of powertillers by rural farmers themselves and sawah system improvement and development have also been expanded. In November 2012 and June 2014, the Nigeria Sawah team investigated the progress of sawah system development on the flood plains. In July 2015, the team made advanced sawah technology training using Mold board Plow of KHS Co., Ltd. of Indonesia (Kubota), G1000 Boxer with Puddler and Leveler with cage wheels (Cage Wheel) for muddy wetlands to promote the farmers’ self-powered sawah system development (Various photographs shown later in this supplement).

The figure attached on the left side of the upper part of the Fig. 3 is a picture of Google Earth on September 8, 2010, showing how the Rima River was flooding near the city of Sokoto. The city is located at the junction of the Rima and the Sokoto River (Fig. 3). Shallow flooding spreads throughout the flood plain with a width of 2-3 km. Normally the flooding period is July to September, and flooding may continue for a few months in some cases as shown in Fig. 9 below in 30 years ago at Birinin Kebbi area, which rice growing sites were investigated by T. Wakatsuki in 1987. Deep water rice cultivation had been carried out in 30 years ago as shown in the nearby picture of ③ in Fig. 9. But such deep and long flooding hardly occur in recent times. The floods usually continues for several weeks due to the numerous dams built upstream in Sokoto, Zamfara, Katsina state. However, some flooding caused by destruction of poorly managed dams and water discharge also occurs. There are no flood control banks, but flooding beyond the floodplain rarely occurs. As shown in Fig. 3, the areas where flooding became a problem in the period of 2001-2015 were the floodplains of the Niger River from Birinin Kebbi and Bagudo to Benin, but even such mild floods the occasions will be less than once in 7 years in majority of the entire floodplains in the Kebbi state (Zwart et al. 2016, Fig. 3). Also, unlike Asia, the destructive power of flooding is not pronounced. Thus sawah systems developed on the floodplains are not subject to major damage.

Numerous small-scale small pump irrigated sawah plots developed by farmers on their own in the floodplains of Kebbi state are easy to repair and recover from flooding damages. Because it is irrigation with 1-2 pumps per hectare of sawah plots, there is no long irrigation and drainage canals. Repair of the bunding systems will be the major works, which can be done by farmers’ personal works. Changes in height differences of sawah plots due to siltation by flooding are not a big problem in the pump irrigation system. In the gravity irrigation, however, the height difference of the sawah plots becomes big problem which relate to the adjustment work on both irrigation and drainage canal. All of these works need community works which is not easy in majority of Sub Saharan Africa (SSA). The problem is the fuel cost due to pump irrigation. However, relatively higher soil fertility and the easiness of water management in sawah plots by pump irrigation in flood plains give higher paddy yields by 2-3tons/ha than the yield in the gravity irrigation system in the small inland valleys. Since the cost of pump irrigation is usually 150-200 dollars/ha, it is possible to recover with an increment of 0.5 tons of paddy, which increase the additional selling price of 100-200 dollars.
In the past 20 years in Kebbi state, the Fadama development project I (1993 - 2002), II (2003 - 2010), III (2010 - 2019) have been supported by the World Bank. The very characteristics of these Fadama projects are the style of their irrigation, which is not a large dam based but shallow groundwater based using less than 8 m depth in flood plains and of the inland Delta. Shallow ground waters have been used for irrigation by hundreds of thousands of farmers’ individually with a small pump (1-2 units per hectare, 250-500 dollars per unit) of tens of hundreds of thousands. Paddy and onion cultivation are common. If avoiding the flooding season-July to September, shallow groundwater (usually less than 8 m) can be used by small pumped for irrigation during October to July, double cropping in a year.

It can be said that this Fadama style irrigated farming method and our sawah technology could be docked in good timing (World Bank 2016, Fig. 6 above). Sawah Technology, which had been targeting small inland valleys originally, has been able to develop floodplains and inland deltas by practicing in Kebbi state (Wakatsuki 2009). It was Bida of Niger State that started the first on-farm research on irrigated sawah system development by farmers self-help efforts under the IITA’s Wetland Research project in 1986 (IITA 1986, 1987, Wakatsuki 1989, 1997). But in terms of state wide development it was far behind Kebbi state. However, in the demonstration and training of sawah technology during 2011-2015 at various villages in Kebbi state, Nupe farmers of original sawah technology on farm research site at Bida (Ejeti and Shese Bikun villages etc.) have been working together with NCAM’s Sawah staffs. Bida sawah farmers had contributed to the transfer the sawah technology to Kebbi farmers. Conversely, Bida sawah farmers were trained on the well digging technique for dry season pump irrigation by the farmers in Kebbi state. By this, Bida began rice farming in dry season in 2014, but stayed only limited to few village. Thus state-wide dissemination has not been realized so far in Niger state.

The reason for this difference partly come from the fact that the integration of Hausa rice farmers and Fulbe nomads had realized long years ago in Kebbi State, but in Niger state the ethnical division of Nupa rice farmers and Fulbe is still large. In Kebbi state, cooperation of the royal family, the Fadama staffs, ADP (agricultural development project), farmers' association has been wonderful. Although the political power is held by Fulbe, Gwari and Hausa, majority of rice farmers are Nupe people who have little access to such political power.
(funds) in Niger state. For this reason, there is a movement aimed at independence as Nupe state from the Niger state. The cooperation between Nupe rice farmers and the state government is not so good. Noteworthy in Kebbi province is not only the farmers’ group, but also that Fadama III and ADP, under the state agriculture ministry, and traditional chiefs were all very enthusiastic to promote rice production. As a fact of supporting it, the staying expenses etc. of the Japanese and NCAM sawah staffs who carried out such sawah technology demonstrations and training were spent by Kebbi state budget. All the salary and accommodation expenses of the powertiller operators who accompanied Nupe villages at Bida were spent by the Kebbi state or private rice farmers. The will of Kebbi state for self-help effort was very clear.

As shown in Fig. 6, the World Bank evaluates the technical evaluation of Sawah Technology in 2016 in the implementation completion report of the Fadama III project "Evaluate the results of demonstrations and training in six provinces that represent the six geographical zones of Nigeria, and Sawah Eco-Technology has made it possible to increase yield from 1.5-2.5 t / ha up to 6.6 - 7.2 / ha at the farmers’ level. According to our observations, only Kebbi province was able to disseminate this technology to farmer level out of the six states. In the other five states, such as FCT, Benue, Kwara, Ebonyi, Delta and Lagos states which carried out similar training at the same time, the positive intention toward self-help efforts shows less clearly in action. Thus there have been no serious endogenous efforts observed so far. In Lagos State and FCT there are few professional rice farmers, in Delta and Benue states the demonstration sites were destroyed by flooding. The training and demonstration progresses relatively smoothly in Ebonyi province, but the operations in all other states were not smooth, and the results to be seen have not been obtained so far.

3. Rice cultivation before the introduction of Sawah technology in the flood plains of Kebbi State: Field observation in 1987 and 2011

Fig. 7 is the enlarged view of the main road crossing the floodplain near Arugungu City in the Fig. 3. The first survey by Wakatsuki had done on December 14-16, 1987, which is as a part of the guidance of doctoral research at IITA (Oyediran 1990).
The area around Arugungu city has been the center of rice cultivation in Kebbi state since and still now. The Fishing Festival has been also carried out in this nearby floodplain since at that time and till now. At that time, African rice (*Oryza Glaberrima*) had been widely cultivated on non sawah fields as shown in the picture on the bottom right of Fig. 8. In March and October 2011, Wakatsuki made field survey trips on the training and demonstration of Sawah Technology.

3-1. Non-sawah rice farming on Arugungu flood plain in 30 years ago, 1987

![Fig. 8. Overview of Arugungu flood plain from the bridge from Arugungu town heading to Ar1-AR4 sites (See Fig. 7) during the survey of December 1987. The road traversing the flood plain was nearly the same position as the current road in Fig. 7. You can see the Rima River in the dry season on the right side of the ① photo, which was taken from inside the car. The lower two are near AR 3. African rice and wild rice were grown. Mr. GB Oyediran (now Prof. LAUTEK University) is investigating.](image)

![Fig. 9. Photo continued in 1987. Upper left ① is an hand made well and pump irrigation to micro plots of onions along the Rima river in the east of AR1. This seems to be the origin of micro sawah plots. African rice cultivation on non sawah fields in the far distance. The lower left ② is the accumulation of salt on the topsoil of the onion irrigated plots. Upper right ④ is a flood plain soil profile near AR1 and non sawah paddy cultivation of African rice. Bottom right ③ Cultivation deepwater rice near Birinin Kebbi.](image)

3-2. Rudimentary Micro-Sawah based rice cultivation in Kebbi state just before the training of the Sawah Technology, 2011

Fig. 10-15 show the rice farming of the Rima river flood plain from Sokoto to Birinin Kebbi and Jega on the Zamfara river flood plain. These survey was done just before the start of Sawah Technology training and deployment on May 2011, which was 24 years after the survey in 1987. When Wakatsuki re-examined in May 2011, as shown in Fig. 10 and 14, rice and onions were cultivated in micro rudimentary sawah plots using small pumps lifted shallow ground water shallower than 8 m. The total area on the Rima river floodplain
between Arugungu-Birinin Kebbi was estimated to be more than tens of thousands of hectares. Fig. 10 and 11 were taken on early May 2011 at the road crossing the flood plain near Sokoto and the red circle at the center of the bridge (the red circle in the pasted photo on top of Fig. 7). Groundwater is sucked up from a shallow well by a small pump and irrigated in micro sawah plots to cultivate rice, tomato and onion. Because it is an extension of upland irrigation, both bunds and canals were poor. Since leveling and puddling were also insufficient. It can not control flooding depth, weed and nutrient management are difficult. The water use efficiency was very low. It was estimated that the average yield was 2.5 t / ha or less (Fig. 6, World Bank report) at this micro rudimentary sawah plots stage.

Fig. 10. Micro rudimentary sawah plots with shallow tube well and small pump irrigation along the road crossing both Rima and Sokot river floodplains(see Fig. 3). Both bund and canal are poor. Photographed on May 2011 at the A position of Fig. 3

Fig. 11. Rice cultivated in micro rudimentary sawah plots, the opposite side of the road in Fig. 10 (Photo was at the B position). Attention should be paid to a human who bends to the upper right (red circle).

Fig. 12. Rice planted on the ridge with pump irrigation. Just next plot of the Fig. 10. The photo on the right is a small section of a typical irrigation vegetable field in West Africa.
Fig. 11 shows rice cultivated in micro sawah plots, the opposite side of the road in Fig. 10 (Fig. 12 B position). Attention should be paid to a human who bends to the upper right (red circle). The size of one micro sawah plot is about 15 - 30 m² (See Fig 13, which maker length is 90m in left Google photo and 50 m in the right). It is very similar to the micro sawah plots in the early Yayoi era, ca2500 years ago, in Japan. Fig. 12 shows rice planted on the ridge with pump irrigation. This type of rice cultivation has been also common till now at Sokoto flood plains, which can be seen at the C position of the Fig. 13 below. The photo on the right is a small section of a typical irrigation for vegetable cultivation in West Africa. The micro sawah plots irrigation might have been on the extension line of such upland field crop irrigation (Furukawa 2011). Fig. 13 shows the Google earth photo on 2015. Please note our field survey had done. As described in this report, Kebbi state had similar rice farming before 2011 but has evolved rapidly to the standard sawah system during 2011-2016. But Sokoto state has been no such evolutionary change during 2011-2015 as seen in recent Google earth photographs.

Fig. 14. Rice and onion cultivation by pump irrigation at the vicinity of AR3 site in 1987, Arugungu. Photographs were taken on May 2011.

Fig. 15 Micro sawah plots pump irrigated rice cultivation on the Zamfara river floodplains near Jega. Only the ⑥photo was taken from the flood plain at Birinin Kebbi area. Photos were taken on May or Sep, 2011.
Fig. 14 shows rice and onion cultivation by pump irrigation at the vicinity of AR3 site in 1987, Arugungu. These photographs were taken on May 2011. Rice and onion were cultivating in micro sawah plots and or elongated section with a width of 1-2 m and a length of ten and several meters. These field conditions were similar to those of the Sokoto flood plain as shown in Fig. 10-13. Fig. 15 shows poor rice cultivation under micro sawah plots at Zamfara river flood plain where is just a few km south from Jega town. As shown in the photographs even under pump irrigation, the growth of weeds is fast and the growth of rice is poor due to rudimentary sawah stage, it is difficult to manage water and weeds. Even under Birinin Kebbi's local government-developed irrigated rice field, which is shown as B photograph in the Fig. 15, we see very poor weed management. All photographs were taken on early May 2011, just before the sawah technology training and demonstration.

Fig. 16. Zamfara river flood plain. Length of the scale marker is 800m. The sawah technology training and demonstration were done at the site 1 and site 2, which are described later in the section 6 during March 2011 to December 2012. Following 6 Google earth photographs during 2003-2017 are the expanded image of the site 1 area to show how farmers’ rice fields platform had changed before sawah technology and after sawah technology.

Fig. 17. Expansion of the site 1 in the Fig. 16. The length of the scale marker is 50m. The shooting dates of the same site 1 are 5th April, 2003 for A, 8th October 2007 for B, 28th of December 2011 for C, 22nd January 2014 for D, 3rd July 2016 for E, and 6th November 2017 for F, respectively. Around 1ha section surrounded by red by a red line is a sawah technology demonstration place in March-December 2011.
Fig. 16 shows the Zamfara river flood plain near Jega city. Length of the scale marker is 800m. The sawah technology training and demonstration were done at the site 1 and 2, which are described later in the section 6, during March 2011 to December 2012. Following 6 Google earth photographs during 2003-2017 are the expanded image of the site 1 area to show how farmers’ rice fields platform had changed by sawah technology. As show in the Fig. 17C, about 1 ha section surrounded by a red line is a place where training and demonstration of Sawah Technology was carried out in March - December 2011. We created standard sawah system platform by farmer's own power and trained sawah based rice production both in rainy season and dry season.

The following can be read from the time sequence images of Google earth from 2003 to 2017 shown in Fig. 17A to F. In the Fig. 17A, a part of the flow of the stream of the Zamfara River is visible in the upper right of the figure. In the image of 2003, Fig. 17A, there were no traces of the lines showing the sections of agricultural land use artificially drawn on farmland like sawah plots in this area of the floodplain. In the image of 2007, Fig. 17B, however, micro sawah plots of 10 - 40 m2, one section 3-6 m length, were to be seen. As shown in the 2011 image, Fig. 17B, we can see the standard sawah plots were developed almost entirely except for some depressions and river beds. This change was resulted by our Sawah technology training, which had been carried out in March-December 2011. In the image of 2014, Fig. 17D, we can clearly identified that sawah system platforms have completed in almost everywhere. Each sawah plot has leveled well, enlarged, and enclosed by reinforced bunds. On the other hand, in the image of July 2016, Fig. 17E, it is understood that some sawah plots developed in the depressed part of the flood plain were submerged. However, as can be seen in the image of November 2017, Fig. 17F, except for the riverbed part at the upper right, the improved sawah platform developed by farmers were not damaged or rebuilt and it can be seen that sawah based rice production is being carried out sustainably.

(Note) Fig. 18A-H: Tentative definition: ① Micro-rudimentary sawah plot(field), ② Small-section sawah plot(field), ③ Standard sawah plot(field), and ④ Paddy field(plot).
The right side of the Fig. 18A shows micro rudimentary sawah plot fields. The left side is non sawah rice field. Fig. 18A is also paddy fields. Fig. 17B, left side of the Fig. 17C, Fig. 17E and F are also micro rudimentary sawah plot field. The right side of the Fig. 18C and Fig. 18H are the standard sawah plot fields. Although there is no particularly clear criterion for the sawah plot’s size, if the size of one sawah plot is usually 50 m2 or less, we define tentatively micro sawah or small section sawah. If sawah plot bunds are weak and small so as to make impossible human to walk on the bund without any damage of water control of the sawah plot, we use the adjective “rudimentary”, thus ① micro rudimentary sawah. However, if strong and big enough to allow easy walk, we use ② small section sawah plot. The ③ standard sawah plots have following characteristics. The plots have irrigation and drainage facility and the size are normally larger than 50 m2. The surrounded bunds are strong, big and compacted to make possible easy walk and to prevent water leaking. Each sawah plot surface soil is puddled (normally) and leveled within 10cm height difference in a plot.

All of these rice fields of ①-④ we can be described as paddy field. Thus as long as if we use the term “Paddy fields”, we cannot distinct the different characteristics of rice fields described above, i.e., ①-④. Thus the term of “Paddy” can not be defined scientifically at least in SSA.
4. Demonstration and training of Sawah Technology by NCAM Sawah team during 2011 to 2015

Based on the agreement of Fadama III in June 2010 and Nigerian Sawah team of National Center for Agricultural Mechanization (NCAM) and the JSPS’s research project of Kinki University (Fig. 2, 4 and 6), Kebbi, Ebonyi, and Benue states began activities from February - March 2011. The other three states, FCT (Federal Capital Territory), Lagos, and Delta Stated had been started activities in 2010. Nigeria Sawah Team was divided into 4 groups to cover these six states for training and demonstration. Mr. Joshua Aliyu who is Nupe and fluent in Hausa language led the operation at Kebbi state. Mr. Suleman from Ejeti village (the first sawah village established in 2001) at Bida joined Mr. Joshua’s operation at Kebbi. Since good powertiller
operator like Mr. Sleiman can also instructs farmers the layout and development of Sawah system, who becomes an important key person for the sawah technology transfer from farmers to farmers. Incidentally, Mr. Suleiman has been employed by Kebbi farmers’ association since the first operation in 2011 to till now in 2018. He has been living in villages throughout the state of Kebbi and has been directing sawah technology operation.

The outline of the on-the-job training and demonstration of the Sawah technology conducted at Kebbi state during 2011-2015 is shown in Fig. 19-24 below. Details are shown in Sawah Technology (4): Practices and Potential of Irrigated Sawah System Development and Sawah Based Rice Farming by Farmers’ Self-help Efforts.

Firstly, during March 2011-December 12, we set up six demonstration sites of 100 x 100 m at 2 places total of 12 ha in three local government areas of major rice centers of Arugungu, Birinin Kebbi and Jega as shown in Table 2. NCAM/Kinki university sawah team lead by Prof. T Wakastuki, Dr. YS Ademiluyi and Mr. J Aliyu developed a standard quality irrigated sawah system demonstration plot and sawah based rice farming through on-the-job training of ADP and Fadama III staffs as well as rice farmers’ association members.

The photo on the top of the Fig 19(①) shows one of the demonstration plot at the site 1 at Jega shown in Fig. 16. Fig. 19② shows shallow tube well, pump and suction and extension horses for irrigation at the same site. These are taken on May 2011. Fig. 19③ and ④ were filmed in July 2015 at Arugungu’s AR1 site (Fig. 7). Fig. 20 show some leveling operations to get standard height difference, i.e., <±5cm in one plot of sawah.

When the height difference of one sawah section is within 10 cm, we make rice seedlings of standard plant height of about 15 cm, which is normally within three weeks after germination, can be transplanted to the whole one section of sawah. In the case of SRI (System Rice Intensification) farming method and direct sowing cultivation, it is necessary to further increase the degree of leveling to within 5 cm height difference in one sawah plot. ① shows powertiller and wooden board method for leveling (The Photo was taken on 2002 in Biemso No.1 village of Ghana). ②Wooden board for powertiller levelling. ③Manual leveling by wooden leveler(Photos at Bida) and iron rake(④ at Jega). Powertiller attached leveler operation at Arugungu (June 2015).

Fig. 19. Some scenes of Sawah technology training and demonstration at Kebbi. ① and ② are demonstration plots at Jega site 1, May 2011. ③ and ④ are advanced sawah technology training using KHS Indonesia’s Quick G 1000Bower power tillers (8.5Hp and 11 Hp equipped with Kubota engine) attached a mould board plough, puddler, leveler and cage wheel, at AR1 site, Arugungu, on July 2015.
Fig. 20. Leveling operations to get standard height difference, i.e., $\pm 5\text{cm}$ in one plot of sawah. ① and ② power tiller and wooden board (① is taken in 2002 in Biemso No.1 village of Ghana. Manual leveling by wooden leveler(③ at Bida) and iron rake(④ at Jega). Powertiller attached leveler operation at Arugungu (June 2015).

Fig. 21. Advanced Sawah Technology training using mould board plough, leveler, and paddler attached to powertiller for ① and ④ bunding, ② and ③ soil moving, and ⑤ and ⑥ canal cutting.
Fig. 21 shows the new training contents of sawah technology using plows and levelers attached to the powertiller conducted in 2015-2017. As a result, the work efficiency of leveling, bunding, and irrigation and drainage canal construction were improved. Thus the sawah technology was upgraded. ① and ④ are supplementary works for bunding using plows and cutting of canals. The powertiller work efficiency improves by combining with manpower of African hoe or cutlass’s works. ② and ③ show how to use the leveler to move the soil (②) for leveling of relatively larger sawah plot, it is possible to move the soil even at a distance of about 10 - 20 m). ③ shows the moving the liquefied soil of 50-100 m by using soil liquefaction (Thixotropy) using properly prepared canals. With these tasks it is possible to create a relatively large, long bund and waterway. It will be a substitute for heavy machinery such as bulldozers and backhoes, and promote farmer's own irrigation sawah development.

Leveling quality is very important but manual leveling is hard work. The power tiller based leveling has work efficiency equivalent to 30 to 40 manpower. The labor cost per day is about 3-5 dollars (500-1500 Nigerian naira in 2013-2017), so the labor cost of 30-40 man power will be around 100-200 dollars and the rent of the tiller will be around $ 50/day, so mechanization like a powertiller is advantageous and be realized even in the current economic situation in Nigeria.

Fig. 22. The site of advanced sawah technology training on 8th-12th of July 2016 at the AR1 site of Arugungu. The ① photo was taken from the direction of 1 of the red arrow and the ② photo from the 2 direction. Google earth is 27th of June, 2016.

Fig. 22 shows the place of advanced training and demonstration of sawah technology using Indonesian KHS Quick G 1000Bower power tillers (8.5Hp and 11 Hp equipped with Kubota engine) attached with a mould board plough, puddler, leveler and cage wheel, at AR1 site, Arugungu, on July 2015. It is carried out in the vicinity of the “T” area of the Google Earth in 2016 as shown above. The ① photo was taken from the direction of 1 of the red arrow and the ② photo from the 2 direction. The position of the AR1 site is shown in Fig. 7.

Fig. 23 shows pictures of the new skills of the sawah technology practices at the AR1 site of the Arugungu flood plain on July 2015. ① Power tiller attached with standard cage wheel for wetter, deeper and ultra wetter soil. Please compare the Anti Skid wheel for drier soil condition (Fig. 4 and ③ of Fig. 31, Dong Feng, made in China). ② Pump irrigation from shallow pipe well in front. ③ Work by leveler after substitution. ④ Commemorative photo shoot.
Please compare the Fig. 7(1987) and Fig. 22/23(2015 and 2016). These are the same AR1 site. In the vicinity of AR1 site there was no sawah fields in 1987. During 2011-2015 these area have covered with standards sawah system everywhere developed by farmers’ self-help efforts.

Fig. 23. Advanced sawah technology training on 8th-12th of July 2016 at Arugungu. ① power tiller attached with standard cage wheel. ② small pump is irrigating suctioning shallower ground water, <8m, through pipe well. ③ memorial photo after quick puddling and leveling. ④ Leveler operation.

Fig. 24. Advanced sawah technology training on 8th-12th of July 2016 and the way of powertiller deployment at Kebbi. ① KHS power tiller packed on pick up track. Puddler, leveler and cage wheel are packed, too. ② and ③ motor bike can transport heavy Dong Feng, 15HP, powertiller at any small villages in Kebbi. ④ Plowing operation by mould board plough by KHS G1000 boxer.