THE "SAWAH" TECHNOLOGY OF RICE PRODUCTION FOR THE LOWLAND: AN EFFECTIVE TOOL FOR POVERTY ALLEVIATION IN SOUTHERN GHANA

Buri. M. M*., Issaka R. N* & Wakatsuki T**. *CSIR – Soil Research Institute, Ghana ** Faculty of Agric. Kinki Univ., Japan

<u>COMMERCEMENT</u>

Work carried out between 2001 and 2005 in the Ahafo South District of the Ashanti region, Ghana after the introduction of the "Sawah" technology (a joint CSIR/JICA effort)

Area statistics
Semi-deciduous agro-ecological zone
Bi-modal rainfall pattern
Annual rainfall of 800 -1000 mm
Main season: April – August
Minor Season: September - December

OBJECTIVES

Assess the usefulness and impact of the "sawah" technology on rice production within the Ahafo Ano South district of Ashanti.

Tranditional rice field: no water harvesting, no bunding, no puddling, no levelling

WHAT IS "SAWAH"

The term "sawah" simply mean paddy. It refers to the creation of an environment that effectively and efficiently harvest and controls water for rice cultivation by (a) bunding, (b) puddling and (c) levelling It uses mostly local materials for water harvesting

MAJOR ACTIVITIES UNDERTAKEN

1. Technology transfer (farmer organization and on-the-job training)

2. Monitoring of paddy yields of farmer-groups

3. Monitoring of soil fertility levels through soil sampling of farmers fields

4. Estimation of revenue (information provided by farmers

On-the-job training

Farmers, who participated fully in all operations, were taken through the following:

Group formation and site selection

Water management (harvesting & utilisation)

Land preparation (ploughing, pudlling, levelling)

General rice agronomy and harvesting

Bunding in Sawah construction can be done by participating farmers' (self-support efforts)

Land Preparation

Power tiller ploughing

Mean grain yield for "Sawah" adopted farmer- groups						
	Paddy Grain Yield (t/ha)					
Farmer-group	2001	2002	2003	2004	2005	
Adugyama- A	4.0	4.7	3.8	5.0	4.5*	
Adugyama- B	4.4	4.8	5.5	5.5	4.8*	
Biemso 1 - A	4.8	4.7	4.8	5.5	-	
Biemso 1 - B	4.7	5.7	5.9	6.5	5.4	
Biemso 1 - C	-	4.5	5.4	5.5	5.5	
"Sawah" mean	4.5	4.9	5.1	5.6	5.1	
Traditional "	0.9	1.0	1.0	1.1	1.1	

* Fields partially destroyed by floods

Soil nutrient levels (0-30cm) changes under "sawah" from 2001 - 2005							
Paramet	ter / Site	Adugyama A	Adugyama B	Biemso A	Biemso B	Biemso C	Mean
Total C	Initial level	13.7	13.2	11.8	8.1	11.1	
(g kg ⁻¹)	% change	3.2	2.95	3.2	4.1	2.8	+ 3.2
Total N	Initial level	1.30	1.30	1.20	1.10	1.40	
(g kg ⁻¹)	% change	-3.1	0.77	-5.8	-5.4	-4.3	- 3.6
Av. P	Initial level	3.3	3.8	4.5	4.7	3.1	
$(mg kg^{-1})$	% change	15	-83	-30	-84	-62	- 49
Ex. K	Initial level	0.10	0.16	0.05	0.06	0.03	
(Cmol kg ⁻¹)	% change	38	29	16	31	100	+ 43
Ex. Ca	Initial level	8.8	7.3	2.9	3.2	3.8	
(Cmol kg ⁻¹)	% change	45	39	14	10	22	+ 26
Ex.Mg	Initial level	2.2	1.7	0.9	1.4	1.2	
(Cmol kg ⁻¹)	% change	6	3	12	7	7	+ 7
Ex. Na	Initial level	0.06	0.26	0.25	0.25	0.77	
$(Cmol kg^{-1})$	% change	40	18	41	36	7	+28

Estimated revenue of farmer groups per hector

Farmer-group	Paddy yield (kg)	Gross Revenue (US\$)	Production Cost (US\$)	Net Revenue (US\$)
Adugyama	4334	1712	428	1284
Biemso 1 - A	4675	1847	350	1497
Biemso 1- B	4736	1871	324	1547
Biemso 1 - C	4675	1847	349	1498

Source – Information provided by each farmer-group.

Cost of power tiller hiring excluded because project provided power tiller

Conclusions

- 1. The "sawah" technology has brought marked improvement in rice yields
- 2. Quite intrinsic and environmentally friendly to our fragile ecosystems
- 3. The technology has brought increased income to farmers
- 4. Technology is one way of creating rural employment and reducing rural poverty.
- 5. In the light of employment creation, the system can also help to reduce rural urban migration

ACKNOWLEDGEMENT

We are most grateful to the Kinki and Shimane Universities, both in Japan for providing financial and material support, during the conduction of the study