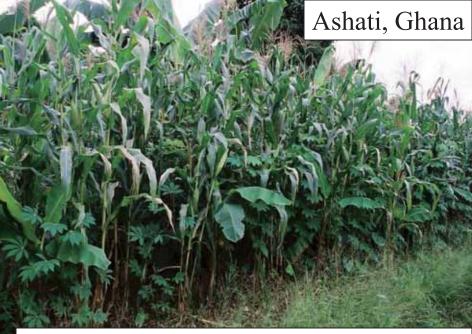

Sustainable intensification and diversification strategies for African rice-based cropping systems T. Wakatsuki, Kinki University, Japan, 2Aug2006, Africa Rice Cong. Guinea, Aug.03 No Sawah, No Green Revolution

Water control through Sawah system is prerequisite for Green Revolution in SSA

Inland valley, Sierra Leone, Jan.89

African crops are diverse, even production potential of rice is higher than demand, rice is importing. Wheat has not enough production potential in majority of SSA countries. Rice is also the highest quality cereals in terms of egg protein equivalent among the other 6 crops Fulbe (maybe also Masai?) cows are not integrated well in the rice farming: Diversity but not good integration in majority of African Agriculture



Nupe farmers' traditional water control systems: Irrigated but rudimentary sawah system because of no availability of animal traction (and small machinery)

After rice Nupe farmers grow various crops

Sustainable intensive mixed cropping

Sustainable Diversification is not a major problem in SSA. Current major problem is how to realized sustainable intensification: Green Revolution

African nature of Diversity Agriculture may contribute tropical Asian and American agriculture in future.

NERICA rice also may contribute to help Asian rice in future, because of its potential genetic diversity

From plateau to Bangkok plain, July 06

Lagos Airport, Aug. 05

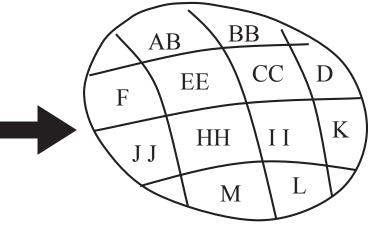
What is Sawah?

Farmers fields are demarcated

No clear demarcation:Land is not injured

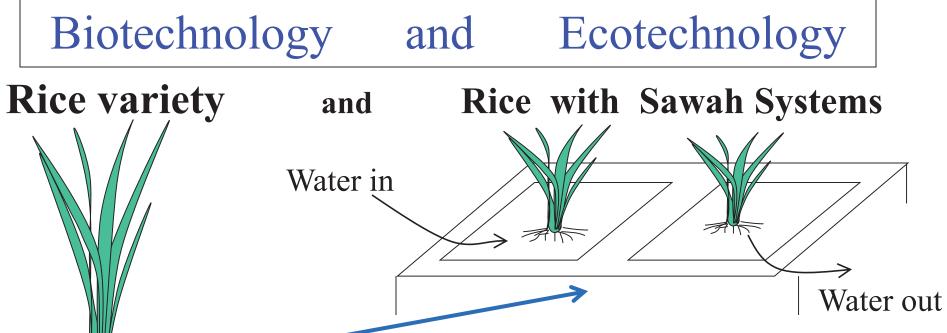
Northeastern plateau area in Thailand, July 06

Dar es Salaam airport, July 06


Farmers' Fields: Diverse and mixed up environments

APCDEFAFIZPCM GMDUGHIGKCDILMBN NPQTBBAACIGHOLKJDBV IRNJUAHGDNVAPCDEFAFT GMDUGHIGKCDILMGHOLNH NPQTBBAACIGHXLKJDHGLP IRNJUAHGDNVGHOLKNPSD TBBAACIGHYLKJDIRNJHG UAHGDNVAPCDEFKLG A B GHIGKCDIMB

mixed up varieties A B C D E


Fertilizer, Irrigation, and HYV are not effective: No Green Revolution

Sawah based eco-technology: Diverse but well characterized, classified,and improved rice environment, especially for water control

pure variety A pure variety B pure variety C pure variety D pure variety E

Successful Integrated Genetic and Natural Resource Management, i.e., Agronomy, needs classified demarcated land, eco-technologically

Sawah is a man-made, improved rice-growing environment with demarcated, bunded, leveled, and puddled fields, for water control. Sawah is soil based eco-technology

Varieties could solve the main problems in Asia Is this also true in SSA? Because of diverse soil, geology, topography, hydrology, climate, vegetation and socio-cultural conditions, the technologies for sawah development and management are very diverse. Therefore we have to research and develop the technology to accommodate in diverse SSA ecology.

Rice (variety) and environment (Sawah) improvement Both Bio & Eco-technologies must be developed in balance

Sawah: Lacking the concept, term and ecotechnology. This makes disturbing the balanced approach for rice development in West Africa and SSA last 30 years **Confusion in paddy, irrigation, water control,** <u>and sawah systems</u> Farmers' job

• Sawah Hypothesis (1): Precondition for Green Revolution :

is Farmers' rice field conditions are ready to accept irrigation water, fertilizer, and HYV or not?

- Sawah Hypothesis (2): We have to overcome scarce nutrient and water: Sustainable rice productivities under Sawah is 10-15 times higher than upland rice fields
- Must remember that lacking the concept & term,

No proper English/French ecotechnological concept and term to improve farmers'rice fields, Sawah or SUIDEN (in Japanese)

Suiden	=SAWAH(Malay-Indonesian)				
(Japanese)	English	Indonesian	Chinese(漢字)		
Plant Biotechnology	Rice	Nasi	米,飯,稲		
	Paddy «…	Padi	稻, 籾		
Environment Ecotechnlogy	(Paddy) ?	Sawah	水田		

Weeds are stronger: upland rice, Bida

No ecotechnology measures

Inland Valley, Sierra Leone

Nupe's indigenous partial water control system

Once Sawah systems are developed by farmers' self-support efforts and water is controlled, majority of HYV can produce higher than 5 t/ha

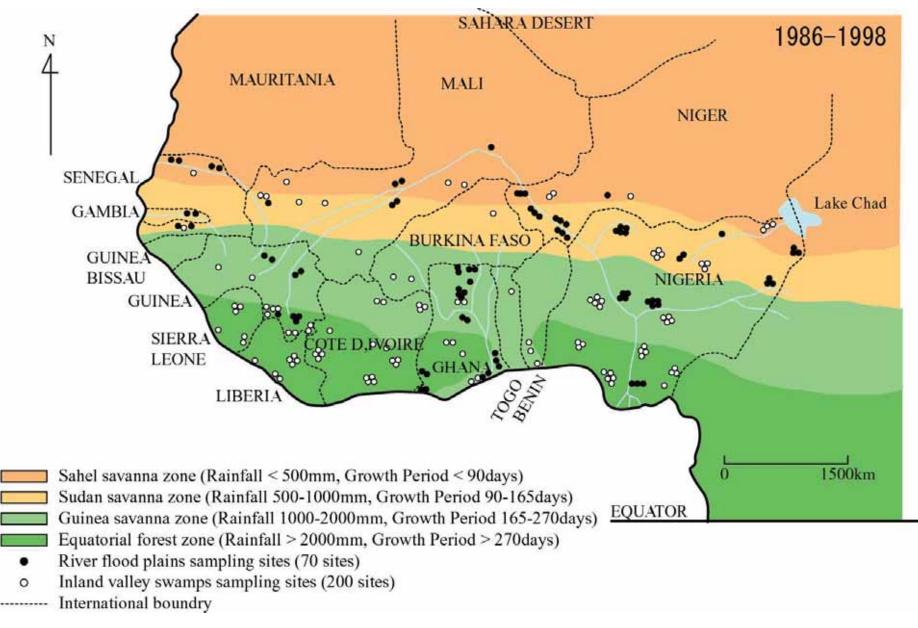
Table Mean gain yield of 23 rice cultivars in low land ecologies at low (LIL) and high input levels (HIL), Ashanti, Ghana (Ofori & Wakatsuki,

2005)	ECOTECHNOLOGICAL YIELD IMPROVEMENT					IENT
Entry No. Cultivar	Irrigate	l Sawah	Rainfeo	l sawah	Upland	like fields
	HIL	LIL	HIL	LIL	HIL	LIL
	(t/ha)		(t/ha)		(t/ha)	
1 WAB 2 EMOK 3 PSBRC34 4 PSBRC54 5 PSBRC66 6 BOAK189 7 WITA 8 8 Tox3108 9 IR5558 10 IR58088 11 IR54742 12 C123CU 13 CT9737 14 CT8003 15 CT9737-P 16 WITA1 17 WITA3 18 WITA4 19 WITA6 20 WITA7 21 WITA9 22 WITA12 23 GK88	4.6 4.0 7.7 8.0 5.7 7.0 7.8 7.1 7.9 7.7 7.7 6.9 6.5 7.3 8.2 7.6 7.6 8.0 8.0 7.3 7.6 7.6 7.5	$\begin{array}{c} 2.9\\ 2.8\\ 3.5\\ 3.7\\ 3.3\\ 3.8\\ 4.2\\ 4.1\\ 4.0\\ 4.0\\ 4.3\\ 4.1\\ 4.0\\ 3.8\\ 4.0\\ 3.8\\ 4.0\\ 3.6\\ 3.5\\ 4.1\\ 3.5\\ 3.7\\ 4.4\\ 4.0\\ 3.8\end{array}$	$\begin{array}{c} 2.8\\ 2.9\\ 3.0\\ 3.8\\ 3.8\\ 3.7\\ 4.4\\ 4.0\\ 3.8\\ 3.7\\ 4.0\\ 4.2\\ 4.0\\ 3.8\\ 4.3\\ 3.3\\ 4.1\\ 3.7\\ 4.0\\ 3.8\\ 4.5\\ 3.8\\ 4.5\\ 3.8\\ 3.5\end{array}$	$\begin{array}{c} 1.6\\ 1.3\\ 2.1\\ 2.1\\ 2.0\\ 2.0\\ 2.0\\ 2.1\\ 2.3\\ 2.0\\ 1.8\\ 2.2\\ 1.9\\ 1.7\\ 1.7\\ 1.8\\ 1.8\\ 2.0\\ 2.1\\ 2.3\\ 2.2\\ 2.8\\ 1.9\\ 2.0\\ \end{array}$	$\begin{array}{c} 2.1\\ 1.4\\ 2.0\\ 1.7\\ 1.8\\ 1.4\\ 1.8\\ 2.3\\ 1.8\\ 1.4\\ 1.9\\ 2.0\\ 1.9\\ 2.0\\ 1.9\\ 2.0\\ 1.9\\ 2.0\\ 1.3\\ 1.5\\ 1.4\\ 2.0\\ 2.0\\ 1.8\\ 1.8\\ 1.8\end{array}$	$\begin{array}{c} 0.6\\ 0.5\\ 0.4\\ 0.4\\ 0.4\\ 0.3\\ 0.5\\ 0.6\\ 0.5\\ 0.3\\ 0.4\\ 0.6\\ 0.5\\ 0.5\\ 0.3\\ 0.5\\ 0.3\\ 0.5\\ 0.3\\ 0.4\\ 0.6\\ 0.4\\ 0.6\\ 0.4\\ 0.5\end{array}$
Mean (n=23)	7.2	3.8	3.8	2.0	1.7	0.4
Range	(4.0-8.2)	(2.8-4.4)	(2.8-4.5)	(1.3-2.8)	(0.9-2.3)	(0.3-0.6)
SD	1.51	0.81	0.81	0.45	0.44	0.12

Entry 1-7: Early - maturing cultivars, Entry 8-23: intermediate - maturing cultivars

IGNRM for Green Revolution technologies :

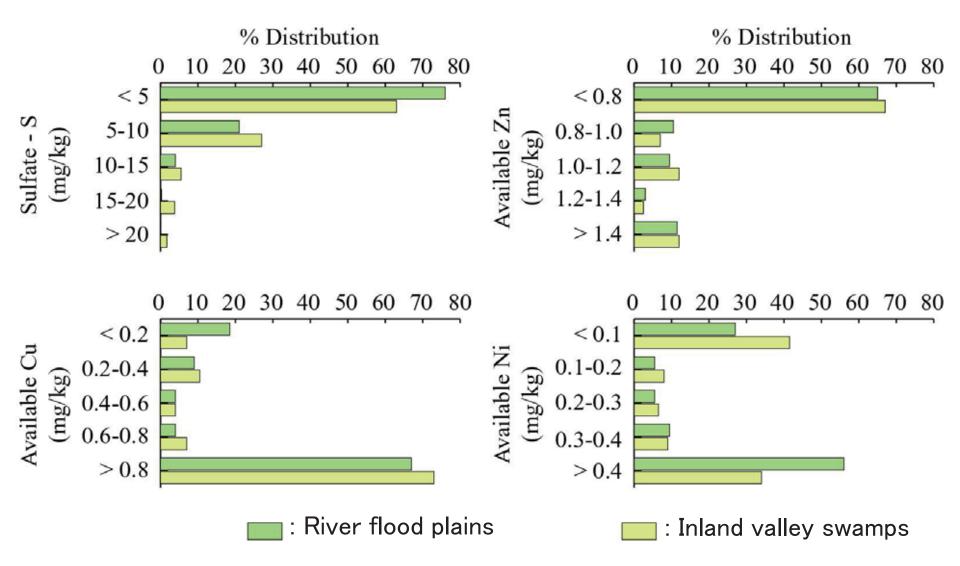
IGNRM Rice variety Improvement dissemination technology


Water, Fertilizer and Soil mgt, Legume, Manure, animal traction ,power tiller, fish and rice vegetable after rice, BNF, Iron toxicity, P deficiency, IPM, Striga, Weed mgt, Cover crops, Cropping systems research, CH4 emission, carbon sequestration, etc. Crop Physiology, Long-term field experiments

Rice Environment Improvement and dissemination technology Missing link is "sawah" in SSAfrica

High yield High quality High tolerance Ecotechnologically demarcated field for water Management has to be existed:

High quality leveled rice field $(\pm 5 \text{cm})$ High quality bunded rice field (no leaking) High quality puddled rice field (nursery)


Research Concept of Integrated Genetic and Natural Resources Management (IGNRM) for green revolution technology : Missing link is Sawah which is lacking in majority of famers' fields

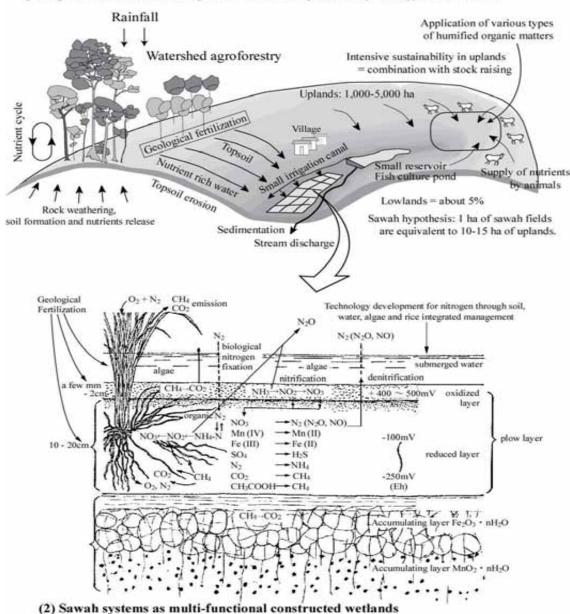
West Africa map showing selected sampling sites of lowland soils. (Buri and Wakatsuki, 2000)

Mean values of fertility properties of inland valleys (IVS) and flood plains (FLP) of West Africa in comparison with lowland top-soils of tropical Asia and Japan

		Available	Exchangeable Cation (cmol/kg)				Sand	Clay	CEC	
	C (%)	N (%)	P (ppm)**	Са	K	Mg	eCEC	(%)	(%)	/Clay
IVS	1.3	0.11	9	1.9	0.3	0.9	4.2	60	17	25
FLP	1.1	0.10	7	5.6	0.5	2.7	10.3	48	29	36
T. Asia [*]	1.4	0.13	18	10.4	0.4	5.5	17.8	34	38	47
Japan	3.3	0.29	57	9.3	0.4	2.8	12.9	49	21	61
*Kawaguchi and Kyuma (529 sites), 1977,** Bray II.										
Source: Hirose and Wakatsuki (268 sites), 1997.										

S & Zn Deficiency: Frequency distribution of topsoil (0–15cm) available nutrients in West Africa lowlands. (Buri & Wakatsuki. 2001)

How can we overcome such low level nutrients & scarce water in Sub Sahara West Africa

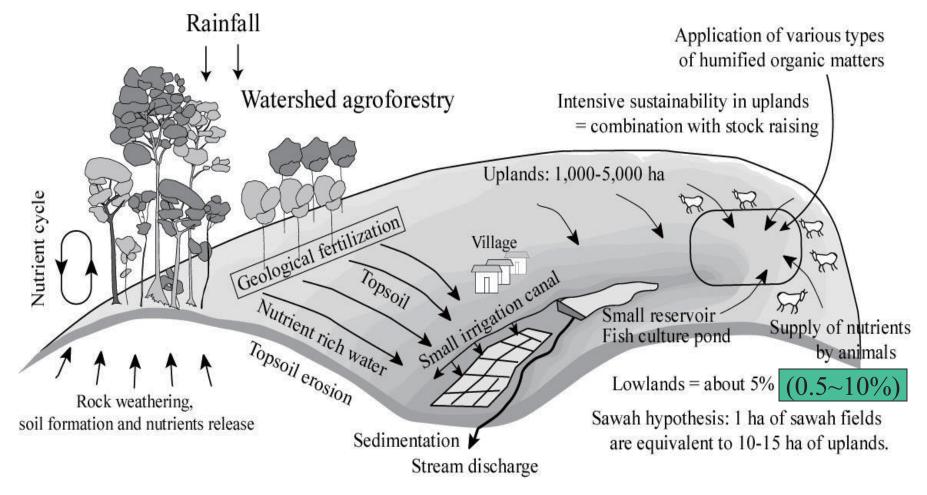

- To develop lowland sawah is the answer.
- The integrated management of lowland & upland, for example, watershed agro-forestry, is also key eco-technology
- The core region of West Africa has similar climate, soil, hydrology, and crops to northeastern Thailand: The important site in Asian African collaboration in future

Sawah hypothesis (II): Sustainable Productivity of lowland Sawah fields are more than 10 times higher than Upland Fields: This is not experimented results scientifically, but experienced results in Asia

1ha sawah = 10-15ha of upland

	Upland	Lowland(Sawah)
Area (%)	95 %	5 %
Productivity (t/ha)	1-3 (1≦**)	3-6 (2**)
Required area for sustainable1 ha cropping	5 ha	: 1 ha

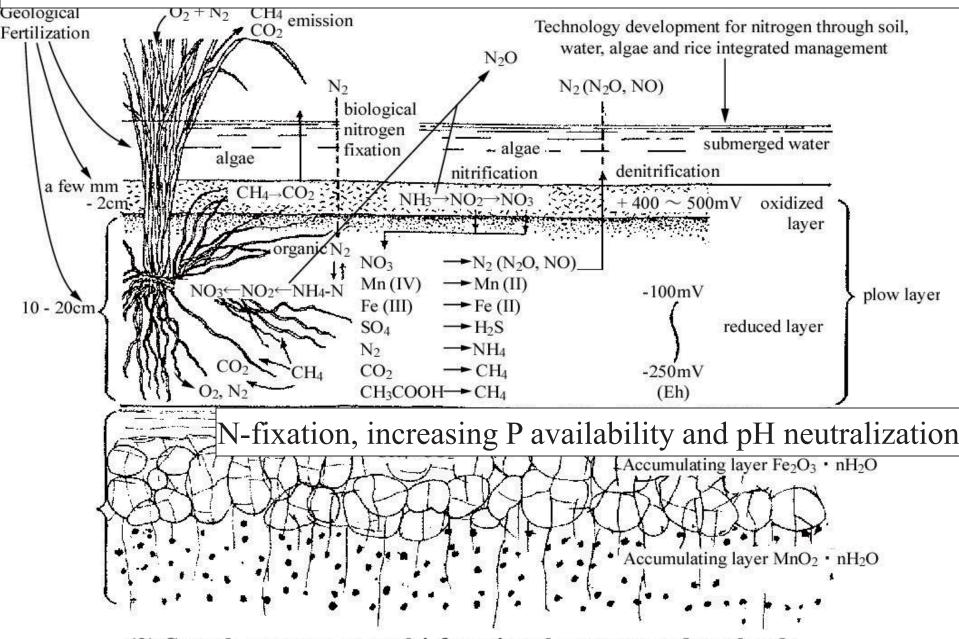
 * Assuming 2 years cultivation and 8 years fallow in sustainable upland cultivation, while no fallow in sawah
**In Case of No fertilization (1) The optimum landuse pattern and landscape management practices optimize the geological fertilization through the control of optimum hydrology in watershed



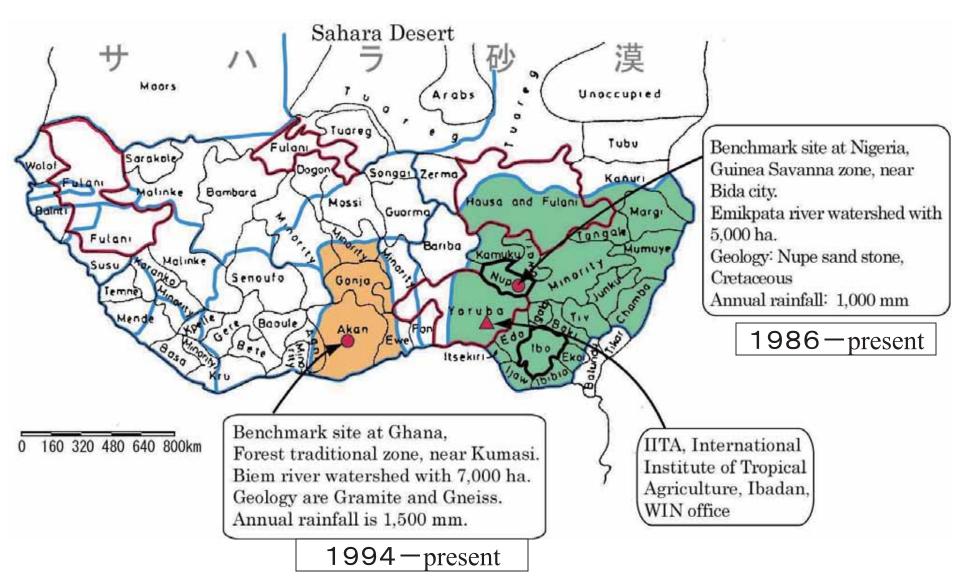
Macro- and Micro-scale Ecological Mechanisms of Intensive Sustainability of Lowland Sawah Systems

(1)GeologicalFertilization: lowland canreceive water, nutrients,and fertile toposils fromuplands.

(2) Multi-functionalConstructed Wetlands forcontrol weed andenhanced Supply of N, P,Si, and other Nutrients

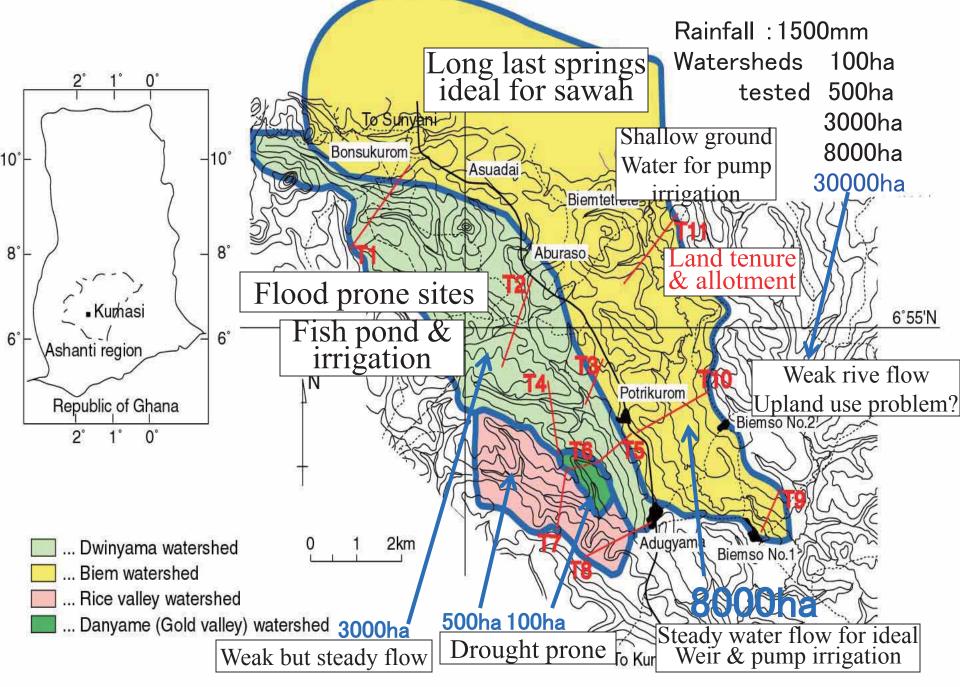

(1) The optimum landuse pattern and landscape management practices optimize the geological fertilization through the control of optimum hydrology in watershed

Concept of Watershed Eco-technology, i.e. Watershed Agroforestry:Multi-functional Sawah type wetland is a key component Japanese Inland Valley (SATO-YAMA systems): Integration of Forest, Pond and lowland Sawah in watersheds


Sawah is Multi-Functional Wetland: Rice, Algae, and Microbes' Complex Ecosystems

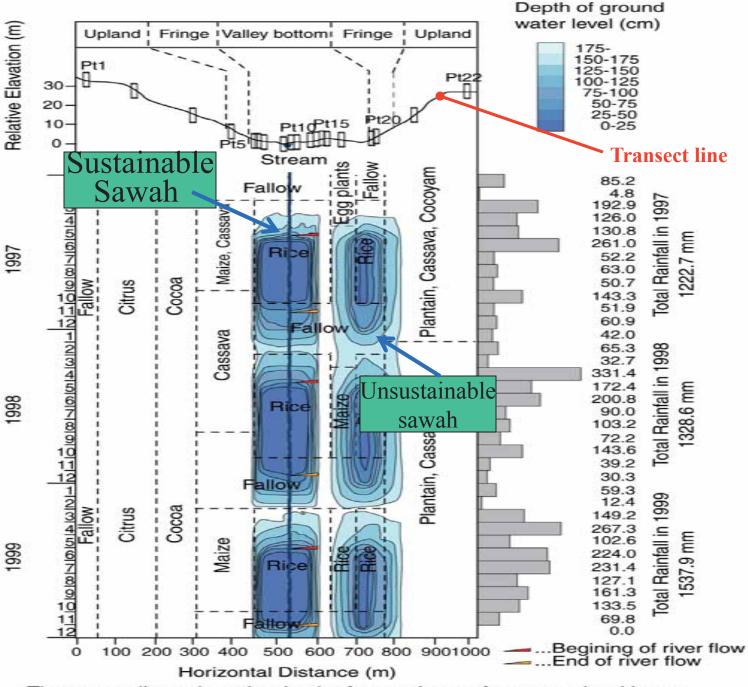
Topsoil, water, and nutrients accumulation through watershed agroforestry

(2) Sawah systems as multi-functional constructed wetlands


Examples of ecotecnological research & Developemnt

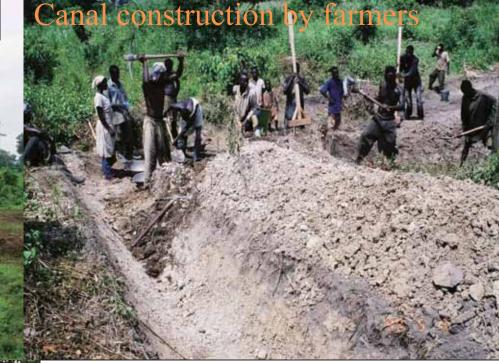
Two benchmark watersheds in Ghana & Nigeria. Map shows countries with major ethnic groups in West Africa

CRI-CSIR/JICA Sawah project for Integrated watershed management, 1997-2001



Research site showing the location of transects in the watersheds.

Although hydrology is the base for success of Sawah, the performance of various ecotechnologis in watershed can be evaluated by water flow.



Crosssection of topography, rainfall pattern, ground/surfa ce water and land use dynamics in stream flow inland valley (Transect 5), Dwinyan watershed, Ashanti Region, Ghana.

The conour lines show the depth of ground or surface water level in cm.

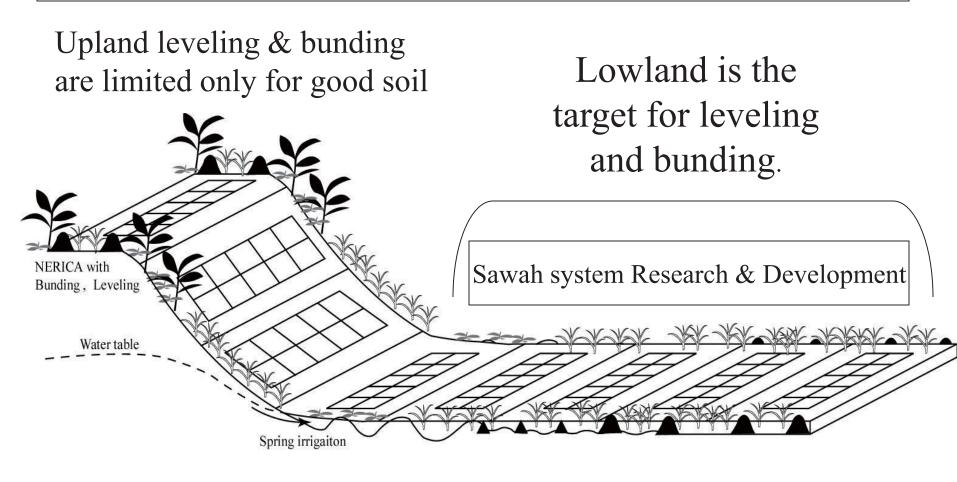
Top-survey, Inland valley, Ashanti, Ghana

Simple barrage by farmers' efforts

Spring Irrigated Rudimentary Sawah, Nupe

Sawah construction can be done by farmers' self-support efforts

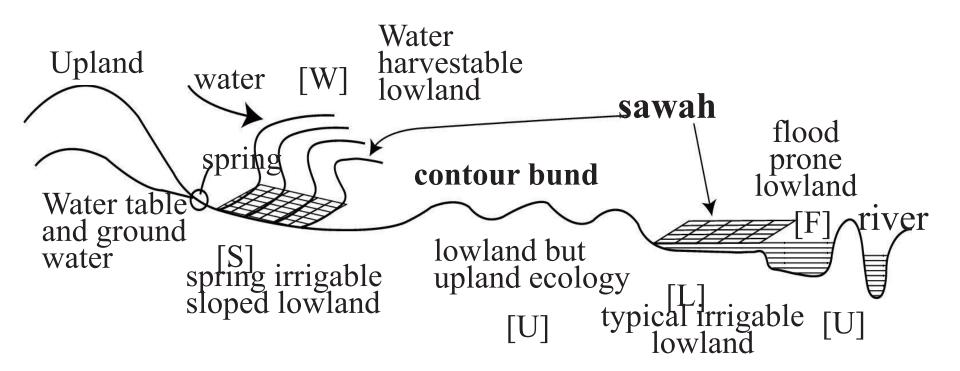
Manual Leveling needs hard-works for Sawah system construction


Sawah can/must be produced by farmers. Power-tiller operated leveling,Ashanti, Ghana

The leveling needs skilled & concerted works

Sawah is ecotechnology based Multi-Functional constructed Wetland: Production, Environment, and Cultural landscape

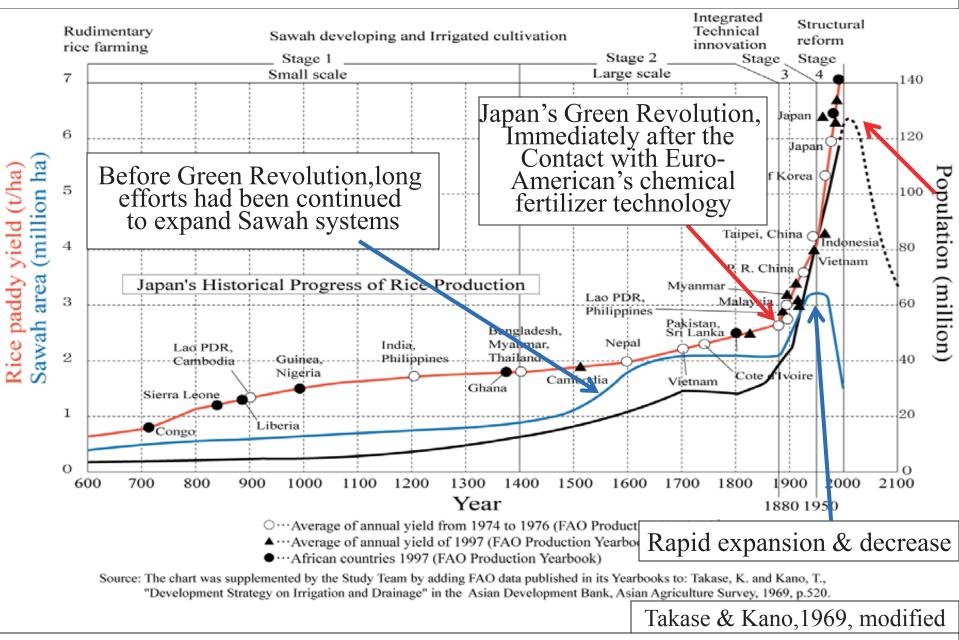
Rice farmer's field demarcation based on soil, water, and topography are the starting point for scientific observation, technology generation, and application.



Water table and water management continuum(WARDA2004, 2006)

Can watersheds of in SSA sustain Sawah system? High rate of soil erosion and lowland sawah soil formation can be compensated by high rate of soil formation:Again Ecological Balance is a Key

Fig. 1. Rate of soils erosion in the world (Walling1983)


Irrigation options: Sawah to sawah/contour bund water harvesting, spring, dyke, river, pump, peripheral canal, interceptor canal, tank

Lowland sawah development priority [S] > [L] > [F] > [W] > [U]

Concept of Characterization and quantitative mapping of Lowland diversity for sawah development (bunded, leveled, puddled rice land). depending on the watershed land use, lowland topography, soil, hydrology and Agroecological zones Estimation of rice production trend by each rice ecology in West Africa during 1984-1999/2003 and 2015 estimation by T.W. (WARDA strategic plan in 1988, African rice initiative 2002, Sakurai 2003, WARDA strategic plan 2004, FAOSTAT 2005)

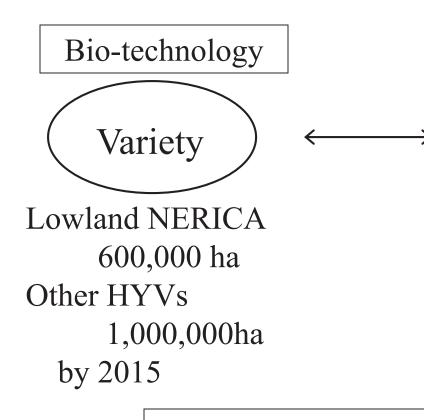
	Area (million ha) 1984 1999/03 2015	Production (million ton/y) 1984 1999/03 2015	Yield (t/ha) 1984 1999/03 2015
Upland contribution (%)	1.5 1.8 2.0 57% 40% 30%	1.5 1.8 2.0 42% 23% 13%	1 1 1 No yield increase
Rainfed lowland	0.53 1.8 3.0	0.75 3.4 7.0	1.4 2.0 2.4
Irrigated lowland	0.23 0.56 <mark>0.80</mark>	0.64 1.9 3.0	2.8 3.4 3.8
Total	2.6 4.7 <u>6.0</u>	3.4 7.7 14	1.3 1.6 2.4

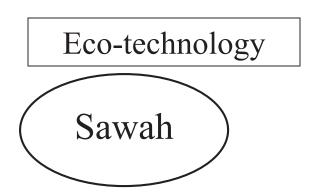
Farmers' sawah fields are the most important infrastructure:farmers' fields come the first Japanese Experiences

Rice yields & sawah area of historical path in Japan in comparison with rice yields in Asia & Africa

Distribution of lowlands and potential irrigated sawah in SSA (Hekstra, Andriesse, Windmeijer 1983 & 1993, Irrigated Sawah area estimate by Wakatsuki 2002)

Classification	Area (m	illion h	a) Percentage(%		
Coastal swamps	16.5	(5?)	7		
Inland basins	107.5	(4?)	45		
Flood plains	30.0	(10?)	12		
Inland valleys	85.0	(15?)	36		
Possible area of sawah development (million ha)					


Max 20million ha (Estimated sawah area came from the relative amount of water cycle in Monsoon Asia, which has 100 million ha of sawah)


Biotechnology (seed) & Ecotechnology (sawah) Need Balanced Research and Development We are going to have many good varieties but farmers fields are/were not ready to accept them in SSA

NEGLECTED PRIORITY MATTERS

- Massive On The Job farmers' Training program for Sawah based rice technology: Asian African collaboration
- Water, soil, and topographic characterization and mapping of Inland Valley Watersheds and flood plain for sustainable lowland sawah development
- In <u>Asia, lowland availability is major limiting factor,</u> but it seems <u>water availability in relation to</u> <u>topography and climate</u> will be major limiting factor in SSA's Sawah Development

Integrated Genetic & National ResourceManagement Technology: Need clear concept and target, which can be examined and monitored

Inland Valley & Flood Plain Sawah

Improvement 800,000 ha New development 800,000 ha by 2015

Monitorable Target of Increase (4-2) t/ha x 4 x $10^5 + 8 x 2 x 10^5$ $\rightarrow 4.8x 10^6$ t/y

Conclusion: Integrated ecotechnology and biotechnology based *African Green Revolution*

These are still rudimentary Sawah (Bida, Nigeria), but the number of sawah based rice farmers who are consciously developing water & soil management systems are steadily increasing in past 15 years. Prerequisite will be soon satisfied therefore within 10-20 years, the green revolution will be realized in SSA, especially in West Africa, if proper balanced strategy & policy were adopted for African green revolution